3.381 \(\int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{15/2}} \, dx\)

Optimal. Leaf size=178 \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{2240 c^3 f (c-c \sin (e+f x))^{9/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{280 c^2 f (c-c \sin (e+f x))^{11/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{56 c f (c-c \sin (e+f x))^{13/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{14 f (c-c \sin (e+f x))^{15/2}} \]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(14*f*(c - c*Sin[e + f*x])^(15/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*
x])^(7/2))/(56*c*f*(c - c*Sin[e + f*x])^(13/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(280*c^2*f*(c - c*
Sin[e + f*x])^(11/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(2240*c^3*f*(c - c*Sin[e + f*x])^(9/2))

________________________________________________________________________________________

Rubi [A]  time = 0.380435, antiderivative size = 178, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {2743, 2742} \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{2240 c^3 f (c-c \sin (e+f x))^{9/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{280 c^2 f (c-c \sin (e+f x))^{11/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{56 c f (c-c \sin (e+f x))^{13/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{14 f (c-c \sin (e+f x))^{15/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(15/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(14*f*(c - c*Sin[e + f*x])^(15/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*
x])^(7/2))/(56*c*f*(c - c*Sin[e + f*x])^(13/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(280*c^2*f*(c - c*
Sin[e + f*x])^(11/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(2240*c^3*f*(c - c*Sin[e + f*x])^(9/2))

Rule 2743

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rule 2742

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{15/2}} \, dx &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{14 f (c-c \sin (e+f x))^{15/2}}+\frac{3 \int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx}{14 c}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{14 f (c-c \sin (e+f x))^{15/2}}+\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{56 c f (c-c \sin (e+f x))^{13/2}}+\frac{\int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{11/2}} \, dx}{28 c^2}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{14 f (c-c \sin (e+f x))^{15/2}}+\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{56 c f (c-c \sin (e+f x))^{13/2}}+\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{280 c^2 f (c-c \sin (e+f x))^{11/2}}+\frac{\int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{9/2}} \, dx}{280 c^3}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{14 f (c-c \sin (e+f x))^{15/2}}+\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{56 c f (c-c \sin (e+f x))^{13/2}}+\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{280 c^2 f (c-c \sin (e+f x))^{11/2}}+\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{2240 c^3 f (c-c \sin (e+f x))^{9/2}}\\ \end{align*}

Mathematica [A]  time = 6.68938, size = 333, normalized size = 1.87 \[ -\frac{(a (\sin (e+f x)+1))^{7/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^7}{4 f (c-c \sin (e+f x))^{15/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^7}+\frac{6 (a (\sin (e+f x)+1))^{7/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^5}{5 f (c-c \sin (e+f x))^{15/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^7}-\frac{2 (a (\sin (e+f x)+1))^{7/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^3}{f (c-c \sin (e+f x))^{15/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^7}+\frac{8 (a (\sin (e+f x)+1))^{7/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )}{7 f (c-c \sin (e+f x))^{15/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^7} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(15/2),x]

[Out]

(8*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(7/2))/(7*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/
2])^7*(c - c*Sin[e + f*x])^(15/2)) - (2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^(7/2))/
(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(15/2)) + (6*(Cos[(e + f*x)/2] - Sin[(e + f*x)
/2])^5*(a*(1 + Sin[e + f*x]))^(7/2))/(5*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(15/2))
 - ((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(a*(1 + Sin[e + f*x]))^(7/2))/(4*f*(Cos[(e + f*x)/2] + Sin[(e + f*
x)/2])^7*(c - c*Sin[e + f*x])^(15/2))

________________________________________________________________________________________

Maple [A]  time = 0.207, size = 302, normalized size = 1.7 \begin{align*} -{\frac{ \left ( 13\, \left ( \cos \left ( fx+e \right ) \right ) ^{6}\sin \left ( fx+e \right ) +13\, \left ( \cos \left ( fx+e \right ) \right ) ^{7}+91\,\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{5}-104\, \left ( \cos \left ( fx+e \right ) \right ) ^{6}-403\,\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{4}-312\, \left ( \cos \left ( fx+e \right ) \right ) ^{5}-637\,\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{3}+1040\, \left ( \cos \left ( fx+e \right ) \right ) ^{4}+1712\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +1075\, \left ( \cos \left ( fx+e \right ) \right ) ^{3}+756\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) -2468\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-1672\,\sin \left ( fx+e \right ) -916\,\cos \left ( fx+e \right ) +1672 \right ) \sin \left ( fx+e \right ) }{140\,f \left ( \sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{3}+ \left ( \cos \left ( fx+e \right ) \right ) ^{4}-4\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{3}-4\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) -8\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}+8\,\sin \left ( fx+e \right ) -4\,\cos \left ( fx+e \right ) +8 \right ) } \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{7}{2}}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{15}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(15/2),x)

[Out]

-1/140/f*(13*cos(f*x+e)^6*sin(f*x+e)+13*cos(f*x+e)^7+91*sin(f*x+e)*cos(f*x+e)^5-104*cos(f*x+e)^6-403*sin(f*x+e
)*cos(f*x+e)^4-312*cos(f*x+e)^5-637*sin(f*x+e)*cos(f*x+e)^3+1040*cos(f*x+e)^4+1712*cos(f*x+e)^2*sin(f*x+e)+107
5*cos(f*x+e)^3+756*sin(f*x+e)*cos(f*x+e)-2468*cos(f*x+e)^2-1672*sin(f*x+e)-916*cos(f*x+e)+1672)*sin(f*x+e)*(a*
(1+sin(f*x+e)))^(7/2)/(sin(f*x+e)*cos(f*x+e)^3+cos(f*x+e)^4-4*cos(f*x+e)^2*sin(f*x+e)+3*cos(f*x+e)^3-4*sin(f*x
+e)*cos(f*x+e)-8*cos(f*x+e)^2+8*sin(f*x+e)-4*cos(f*x+e)+8)/(-c*(-1+sin(f*x+e)))^(15/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(15/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.27381, size = 481, normalized size = 2.7 \begin{align*} \frac{{\left (63 \, a^{3} \cos \left (f x + e\right )^{2} - 76 \, a^{3} + 7 \,{\left (5 \, a^{3} \cos \left (f x + e\right )^{2} - 12 \, a^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{140 \,{\left (7 \, c^{8} f \cos \left (f x + e\right )^{7} - 56 \, c^{8} f \cos \left (f x + e\right )^{5} + 112 \, c^{8} f \cos \left (f x + e\right )^{3} - 64 \, c^{8} f \cos \left (f x + e\right ) -{\left (c^{8} f \cos \left (f x + e\right )^{7} - 24 \, c^{8} f \cos \left (f x + e\right )^{5} + 80 \, c^{8} f \cos \left (f x + e\right )^{3} - 64 \, c^{8} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(15/2),x, algorithm="fricas")

[Out]

1/140*(63*a^3*cos(f*x + e)^2 - 76*a^3 + 7*(5*a^3*cos(f*x + e)^2 - 12*a^3)*sin(f*x + e))*sqrt(a*sin(f*x + e) +
a)*sqrt(-c*sin(f*x + e) + c)/(7*c^8*f*cos(f*x + e)^7 - 56*c^8*f*cos(f*x + e)^5 + 112*c^8*f*cos(f*x + e)^3 - 64
*c^8*f*cos(f*x + e) - (c^8*f*cos(f*x + e)^7 - 24*c^8*f*cos(f*x + e)^5 + 80*c^8*f*cos(f*x + e)^3 - 64*c^8*f*cos
(f*x + e))*sin(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(15/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{15}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(15/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(7/2)/(-c*sin(f*x + e) + c)^(15/2), x)